设x、y、z分别为△abc的三边bc、ac、ab(或其延长线)上的点,且ax、by、cz交于一点(或互相平行),则bxxc·cyya·azzb=1。由意大利数学家塞瓦发现而得名,其逆命题也成立。
读音:sài,sāi,sè
[sài,sāi,sè]
读音:wà,wǎ
[wà,wǎ]
读音:dìng
[dìng]
读音:lǐ
[lǐ]